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Figure 1: Middle: Analysts use PADE to explore age distributions of medical treatments related to pregnancy and labor across the
five Danish regions. This scenario is explained in Section 5. Left: Create views by dragging data fields onto the canvas. Right:
Explore parts of data in a view by dragging data bars to the canvas. This creates a drilled down view.

ABSTRACT

We present a visual analytics tool for collaboratively exploring data
from patient administrative systems on large touch displays in meet-
ing contexts. Large touch displays are becoming commercially
available, but we have limited knowledge about how they might be
used in such a context. We investigated this with our system, Pati-
entAdministrativeDataExplorer (PADE). We designed PADE based
on inquiries with healthcare data analysts tasked with understanding
expenses in a healthcare system that serve about six million residents.
Our goals in designing the system were to enable the analysts to
collaboratively construct hypotheses, quickly generate and execute
strategies, and support ad hoc discussions and Q&A sessions during
meetings. We created a set of interaction techniques that let users
create new visualizations and combine parts of existing ones, and
illustrate these possibilities through an analysis scenario. Finally,
we discuss the possibilities and limitations of PADE, its interaction
techniques, and future work in this direction.

1 INTRODUCTION

While data analysts in teams rarely conduct collaborative analyses,
they frequently communicate and discuss their analysis approaches,
scripts, data sources, and results [33]. This is particularly relevant
when analysing healthcare data, which often require interdisciplinary
collaboration between healthcare professionals, computer scientists,
statisticians, and related fields. Additionally, tools that support this
process are mostly designed for single users. Thus, when analysts
meet in face-to-face meetings, their tools fall short. Similarly, when
analysts meet with analysis consumers, they typically prepare static
reports and charts before such meetings. However, in contrast to
static reports, it might be possible to support these contexts through
collaborative visual analytics.
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We see many options for such support. Distributed, multiple-
device analytics systems might enable analysts to use their exist-
ing mobile devices to collaborate on data analysis (e.g., [4, 37]).
Although this might work when all analysts have access to de-
vices, collaboration issues might arise from decoupled visualiza-
tion workspaces. Alternatively, large, high-resolution displays offer
space for showing many freely arrangeable views at the same time,
allowing analysts to use space to make sense of data [1, 29, 52].
Combined with touch interaction, they might also support walk-up
use and collaboration by offering a ‘shared information visualization
workspace’ [51]. Teams can move through data, gather relevant
excerpts, and discuss these [54]. They might further help analysts
collaboratively keep an overview of analysis provenance, findings,
and decisions [43]. Thus, visualizations on such displays promise to
advance collaboration during exploratory analyses of large data sets
and so improve data-based decision making.

In this paper, we introduce PatientAdministrativeDataExplorer
(PADE). We designed PADE for a team of healthcare data analysts.
As part of our collaboration, we conducted contextual interviews
and design workshops with the team. Their analysis challenges
led us to design a set of interaction techniques for co-located col-
laborative impromptu data analysis on large displays. The goal
of these techniques was to ease collaborative exploration of large
multi-dimensional data sets by enabling creation and combination of
visualizations, in the context of walk-up use. PADE provides touch
interaction techniques for visualizations on large displays. These
interaction techniques provide a novel approach to querying multi-
dimensional data and support drilling down, filtering, and grouping
data. We based PADE’s interaction techniques on bar charts and use
direct manipulation to interact with and combine database queries
using visualizations of previous database query results through touch
interactions. PADE enables analysts to collaboratively construct hy-
potheses, quickly generate and execute strategies, and support ad
hoc discussions and Q&A sessions during meetings.

We contribute: (i) a characterization of a team of healthcare
data analysts’ work; and (ii) a set of interaction techniques, that
facilitate quick and flexible collaborative data exploration using
touch on large displays that were informed by this work domain.



2 RELATED WORK

We first discuss the area of interactive data analysis, then review
visualizations in the context of large displays and touch interaction.

Stolte et al. [50] present Polaris (laying the foundation for
Tableau), which facilitates exploratory data analysis through drag
and drop interaction with database schema fields and with a focus
on constructing queries to produce visualizations. Since the original
publication, Tableau has gained capabilities for showing multiple
visualizations side by side. However, once a visualization is created,
it is not possible to derive new visualizations from the visualization
itself, but only from menu interactions. Drucker et al. [15] study
these alternatives for bar chart interactions. They discuss how a
gestural interface guides participants with low experience with data
analysis towards solving tasks, but at the same time limits more
experienced participants. Zgraggen et al. [56] contribute a system
design for coordinating visualization views by linking them together.
They note that legends were not necessary due to their use of views
on a canvas. Instead, legends “are visualizations themselves and
can be derived from an existing visualization.” We rely on these
attributes of visualization views in this paper.

We see a growing body of large-display visualization research.
This is exemplified by novel visualization designs (e.g., [3]), in-
teraction techniques (e.g., [24, 28]), lab studies (e.g., [9, 44]), and
lab evaluations (e.g., [3]). Large displays allow for co-located col-
laboration, discussion, exploration, and analysis using information
visualizations, by providing a shared workspace with sufficient room
for both individual and group work. Andrews et al. [2] note that
information visualization work has mainly focused on single visual-
izations or multiple visualizations fixed at particular spatial positions.
They argued that large displays can “shift interaction emphasis onto
spatial interaction, such as drag and drop and spatial arranging.”
Large displays have been used to let users lay out and make sense
of documents (e.g., [25, 29]). Andrews et al. [1] design an environ-
ment for text document sensemaking tasks on a tiled desktop display.
They suggested the increased display space increased users’ ability
to carry out data analysis by giving “space to think.” Like documents,
visualizations can be laid out on large displays to support sensemak-
ing. However, only a few examples of this approach exist. Tobiasz et
al. [51] create a meta-visualization to link visualization views. Their
meta-visualization shows a visualization pipeline representation of
relationships between views. In contrast, the approach is more com-
mon in virtual canvas’es (e.g., [16, 20, 30, 56]). These systems seem
inspired by the data-flow paradigm (e.g., [6, 11]) but focus on pro-
viding an overview of visualization provenance [43]. Close to our
work, Dunne et al. [16] demonstrate the importance of showing links
between views that leave a trail of visual breadcrumbs representing
users’ exploration, thus providing a visual analysis provenance. This
supports users’ analyses by helping them understand how a view
was created, recall the exploration history, and share analyses with
collaborators. Knudsen et al. [35] characterize links between views
that show analysis history and data processing as trails of thought
and suggest these supports backtracking and fluid exploration of
alternatives. We follow this line of thinking in our work.

In addition to the research described above on large-display vi-
sualizations, much research has been done on touch interaction
techniques for visualizations, exemplified by novel touch interaction
techniques (e.g., stacked area charts [5], scatter plots [45], and node-
link diagrams [36,48]) and lab evaluations (e.g., [15,36]). Touch and
pen interaction may also be used to facilitate data exploration by pro-
viding intuitive and effortless interaction techniques. SketchVis [12]
allow users to create data-driven charts by drawing on an interactive
whiteboard, supporting easy exploration of data. In a follow-up
study, Walny et al. [53] study combinations of pen and touch input
with SketchVis—later realized in a concrete system [40]. These con-
tributions focus on interaction techniques for a single visualization
view and facilitating close-up work on large displays. In contrast,

we focus on between-view interactions. Sadana & Stasko [46, 47]
contribute touch interactions techniques for several visualization
techniques. Most importantly for our work, they provide techniques
for multiple views [46]. We are inspired by their work to consider
more free-form creation and manipulation of views.

Several calls for understanding the space of collaboration, large
displays, visualizations, and touch have been made [2, 26, 39]. How-
ever, while recent work combine the use of touch and large displays
(e.g., [24]), such combinations are still rare in comparison to mouse
and keyboard interaction. Additionally, we have limited understand-
ing of how to support collaborative data analysis in these contexts.
We think collaborative data exploration can benefit from both large
displays and dedicated techniques, not only for using touch to create
and configure visualization views, but also for combining existing
views to create new ones. We present a system that combines these
ideas and describe the design process in the following section.

3 DESIGN WORK

We conducted the design work for PADE with a team of healthcare
data analysts (hereinafter ‘analysts’). This team performs analysis
and documentation for the Danish healthcare system which com-
prises about 50 public hospitals that serve a population of around
6 million people, and handle about 13 million patient contacts per
year. We first describe the domain.

3.1 Domain inquiries
We conducted observations and contextual interviews [8] over two
weeks at the analysts’ workplace to obtain a thorough understanding
of their tasks and relied on qualitative methods for designing and
evaluating information visualizations [14, 27]. Later, we returned
to the site for shorter day-visits to understand how their work var-
ied in the course of a year. The analysts’ work reminds of tasks
and contexts characterized by [33], and their level of expertise falls
somewhere between hackers and scripters. The group of analysts
comprise about 10 employees, and are part of a group of about 35
employees that work with documentation of healthcare services.
They have mixed backgrounds, including economics, political sci-
ence, mathematics, statistics, medicine, public health science, and
computer science. They primarily use SAS, SQL, and MS Excel for
data analysis. They use these tools to create visualizations, such as
bar charts, line charts, and scatterplots.

Domain Tasks and Data: The analysts’ main task was to
compute annual rates for hospital treatments (Diagnosis-Related
Groups [18]). The government uses these for financial compensa-
tions. To compute the rates, the analysts regularly obtained data from
all national hospitals. The data is primarily used to map hospital
activities data to expenses.

Rate Foundation Table: The received data comprised medical
activities and financial accounts data. Medical activities data de-
scribes what has happened at a hospital (e.g., patient admittance and
discharge dates from the wards and blood test metadata from clinical
biochemistry labs). Financial accounts data describes the expenses
incurred at a hospital (e.g., doctor and nurse salary expenses, implant
costs, and overhead costs for each hospital department).

To compute the rates, the analysts mapped medical activities and
financial accounts data in what they refer to as the rate foundation
table. They constructed the table based on a set of scripts—a subset
of which relate to individual hospitals. The table contains a row
for each patient (about 13 million per year). Each row describes a
patient contact (an admission and discharge for inpatients and compa-
rable information for outpatients) and comprises columns of patient
information (e.g., age, gender, diagnoses), treatment information
(e.g., procedures, duration, ward, hospital), and cost information
(e.g., diagnosis-related group, salaries, overhead). For example,
codes describe medical procedures in a hierarchy of about 9,000
procedures and location definitions in a hierarchy of about 20,000



wards that describe physical locations with changing names and id
over time. As a side note, these data sets might warrant separate
visualizations.

The analysts’ work is characterized by constant adaptation to
changing healthcare policies. To keep up with changing health-
care policies, the analysts revised the scripts used to create the
rate foundation table. Thus, a large part of their work lay in ’data
wrangling’ [32, 33], including revising data flows and understanding
where errors have occurred in the process. Due to policy changes,
information codes might be added, changed, or removed. For ex-
ample, new administrative patient pathway codes, changes of codes
describing in- and outpatients, and introductions of new medical
procedures, might require new description codes. Thus, while the
analysts have scripts from previous years available, they will rarely
work due to syntactic, semantic, and structural changes in the data
between the previous years and the current. To develop new scripts,
they look at scripts from previous years, rely on knowledge in the
team, and debugging based on script outputs.

Context of Work: To discuss ongoing work, the analysts held
weekly team meetings with their manager. In these meetings, each
analyst provided a brief status update, including data, analysis, and
scripting problems. Then, the issues were discussed between the
analysts. After the meeting, the analysts returned to their desks. For
example, in one meeting, an analyst presented a scripting problem
relating to implant costs from a specific hospital. Another analyst
queried “did you look into whether [the data] contained all implants,”
since they had experienced implant types that caused problems in
their scripts. This question required the analyst to look at the data
again in order to be able to answer the question. In addition to weekly
analysis meetings, pairs of analysts often met for smaller half to
two-hour meetings to work on a shared task in front of a computer.
These meetings took place in the context of an informal work envi-
ronment divided in three- to four-person offices in which the analysts
frequently interrupted each other with quick questions. For example,
“do you remember the code for the new cancer treatment?”—not
unlike ‘blast-emails’ described by Kandel et al. [33].

3.2 Design goals

The analysts often discussed issues regarding the rate foundation
table during meetings, and looked at the data individually after the
meetings. With PADE, we aimed to let the analysts discuss problems
with the rate foundation table and their scripts while interacting
with the data in meetings. We imagined the analysts could use
PADE collaboratively to quickly construct hypotheses, generate
strategies, and perform analyses, thus supporting ad hoc discus-
sions and immediate answers to questions about data. To support
mid-meeting collaborative analysis we defined these design goals:

DG 1 Walk-up use in a collaborative scenario. We support this
by providing techniques for quickly obtaining high-level
information, constructing overviews of data, and by using
sensible defaults.

DG 2 Quick and immediate analysis, rather than intermedi-
ary menus to allow the analysts to conduct impromptu
analyses during data meetings.

DG 3 Allow one person to continue the analysis thoughts of
another to support flexible collaboration, communication,
and arguing with data and visualizations.

We conducted design workshops to kickstart the design process.
(see Knudsen et al. [35], workshop A and C). Here, the analysts
worked creatively with us to come up with novel interactive visual-
ization designs inspired by their domain. For example, participants
in the design workshops considered support for exploring why the
number of patients admitted for specific treatments dropped from
one year to the next and analyzing the cost distributions of specific
treatments across hospitals. The analysts frequently discussed the

use of multiple views and how to represent relationships between
them in these workshops.

The analysts asked for ways to efficiently collaborate and con-
tinue each others’ analysis actions, as a form of shared dialogue
with data. They imagined ways to understand and integrate their
collaborators analysis actions. From this pre-design empiricism, we
formulated the following design goals:

DG 4 Multiple views for provenance.
DG 5 Shared visual representation of analysis history.
DG 6 Collaborative data exploration.

To better understand the requirements for a fully implemented
system, we constructed lo-fi prototypes and evaluated them with
the analysts. For example, we presented a mockup implementation
that showed a range of visualization views that could be positioned
freely on a large display. Each view showed their data set filtered
in a manner similar to their existing work practices. Presenting
the mockups to the analysts enabled us to inquire about how they
imagined this would be used in a collaborative analysis context, and
thus, better understand the requirements for an implemented system.

By discussing the mockups, we learned more details about the
analysts needs. For example, they imagined spatially exploring
patient contacts for each hospital within a region in detail, when
looking at a region overview. Continuing to explore other regions in
the overview would allow them to compare to other regions. They
also asked for ways to record findings in the middle of collaborative
analyses, to explore alternative data analysis approaches, or to split
an analysis into two comparable branches, for example, allowing col-
laborating analysts to compare cost distributions for large and small
hospitals in two separate views. Further, they also asked specifically
for the ability to be able to both use spatial and temporal juxtapo-
sitioning. Finally, the analysts asked for ways to understand data
transformation implications and exploration of what-if scenarios.
They imagined combining different parts of data sets and understand
how they could map information from multiple data fields. From
this, we defined the following design goals:

DG 7 Facilitate creating analysis alternatives and branches.
DG 8 Analysis of data transformation implications.
DG 9 Comparison of visualization views side-by-side and by

alternating between them (i.e., spatial and temporal jux-
taposition [19]).

DG 10 Facilitate comparing visualization views across values of
a table column.

DG 11 Facilitate drilling down.

Understanding the analysts’ needs and objectives, we started
designing and implementing PADE. We used post-WIMP guidelines
[7,17,39] to consider feedback, reducing indirection, and integrating
interactions and visual representations.

In designing the interaction techniques, we aimed to support data
exploration by enabling analysts to create and combine visualizations
based on quick and flexible interactions.

Quick: In aiming for quick interactions, we designed techniques
that have a short interaction time span, and aimed to provide im-
mediate results to interface actions rather than intermediary menus.
The argument is that it allows users to quickly gain an overview of
datasets and obtain valuable insights. By precomputing common
aggregations based on a data cube model (see next section), the
system provides quick results to complex queries. A second factor in
aiming for quick interactions, was to design for an unbroken series
of interaction steps. We designed the system such that results of
actions open the possibility for new interactions.

Flexible: In aiming for flexible interactions, we created inter-
action techniques that allow for variation in data exploration. For
example, there are many possibilities and ways of combining user
interface elements to produce different outcomes and users’ can
accomplish many goals in several ways.



3.3 Technological need

Our inquiries showed that the analysts were able to perform data
analyses on their own and had useful tools that supported them in
doing so. However, their existing tools fell short when they needed to
collaborate. In short, we observed break-downs in the collaboration
between analysts. To bridge the collaboration gaps, we aimed to
support this by implementing a system, which we describe next.

4 PATIENTADMINISTRATIVEDATAEXPLORER

PADE provides a novel approach to querying multi-dimensional
data and receiving visualization views as query results. The in-
teraction techniques in the system support creating visualization
views by combining, extending, and re-using existing visualizations.
In designing the techniques, we aimed to support data exploration
by enabling analysts to create, modify, and combine visualization
views using quick and flexible interactions. In designing the interac-
tion techniques, we aimed to support data exploration by enabling
analysts to easily create (DG 1, 2), modify (DG 3), extend (DG 2,
3), re-use (DG 3), and combine (DG 3) visualization views (DG 4).
The goals of the interaction techniques were to ease collaborative
data exploration of large data sets. We designed the system such
that visualization components and data fields can be dragged onto as
many elements in the user interface as possible—this combination is
driven by our goal of quick collaborative analysis (DG 2-3, 6). For
all combinations, we reviewed how well they supported the required
low-level visualization tasks (i.e. how people perform a task), and
how these low-level tasks fit in the larger context of analyses, such
as data discovery, exploration, and comparison (i.e. why people
perform a task) [10]. When using PADE, analysts should be able
to create many related visualizations. Thus, we focused the interac-
tion techniques on changes within views and between views. We
describe the interaction techniques using these categories.

The interaction techniques can be adapted to many visualization
techniques. However, the analysts frequently used bar charts in their
work. Therefore, we decided to use bar charts in our design and
implementation. We return to this choice in the discussion.

4.1 Data model

Due to the nature of the rate foundation table (multidimensional,
highly hierarchical, millions of rows), and our design goals (pri-
marily DG 2), we chose to base the system’s visualization and
interaction techniques on a materialized data cube model [21].
This model facilitates fast slicing, drilling, and pivoting according
to any of the tables’ columns to enable quick data exploration and
analysis, and thus enabled us to meet the design goals (primarily
DG 9-11). We used the data model to facilitate combinations of
user interface elements. The model consists of dimensions, levels,
members, and measures, and is explained in Figure 2. Dimensions
in data cubes are constructed on the basis of nominal data columns
in a data table. For example, a date dimension might be constructed
based on year, month, and day columns that are mapped to levels of
the date dimension hierarchy. Instances of these levels are known
as members. For example, a date dimension may contain year as
a level, which contains 2017 as a member. Likewise, measures in
data cubes are constructed on the basis of quantitative data columns
in a data table. For example, a cost measure might be constructed
based on a cost column. Measures contain aggregates of raw data
columns, grouped by dimensions. Measures can be binned to fa-
cilitate histograms (e.g., a histogram of costs). Therefore, the data
model can contain data fields, which are possible to use as both
measures and dimensions. We refer to these as binned measures. We
also selected default values for dimensions and measures (DG 1,
2). In contrast to approaches that primarily use single views for data
exploration and analysis (e.g., [50]), we used the data cube model
for supporting analysis with many visualization views.
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Figure 2: A simplified representation of the data cube model that
shows three dimensions and two measures. The admission date (light
green border), location (light red border), and treatment dimensions
(light blue border) are shown together with their respective levels and
members. The measures are cost and contact totals. The measures’
values are given in millions (contacts) and billions (costs). The figure
only shows measures broken down on the third level. The data
model used had up to seven levels for some dimensions and measure
aggregates were stored for all level combinations. For example, the
dimension for admission diagnosis codes according to ICD-10 [55]
contains four levels

4.2 Interaction concept
In PADE, access to data happens through a data field menu in the top
part of the display (Figure 1, left). The menu shows dimensions
and measures from the data cube model. Data fields can be dragged
from the menu and released on relevant parts of the user interface,
which are highlighted when a compatible field is dragged over it.
We denote data fields that can be released on a part of the user
interface, as compatible with the part. We opted for a permanent
and fixed position of the data field menu. This solution requires few
instructions to get started and thus works well for walk-up use (DG
1). Views are the main UI element of PADE and can be dragged with
one finger. They show aggregate data in bar charts, where x-axes
encode dimensions and y-axes encode measures (Figure 1, left).

In the following, we describe the interaction techniques in PADE.
We then continue to describe each technique, discuss design alterna-
tives, and open issues. The first techniques are simple but necessary
for exploring data; the latter techniques are more complex. Figures
1 and 3–7 show the techniques as sketches; a video in supplemental
material provides more detail and examples of use.

4.3 Creating views
To create a view, data fields can be dragged to the canvas (the
background area), which results in a bar chart that shows the released
data field (Figure 1, left). We designed view creation with a focus
on speed and of ease of use, since creating a view is a necessary first
step in most tasks, and thus frequently used. Because the dragged
data field may represent both a dimension and a measure, the two
possibilities provides slightly different results. A dragged dimension
or binned measure result in a view that encodes the dragged field on
the x-axis, whereas a dragged measure results in a view that encodes
the dragged field on the y-axis. The y-axis is scaled according to:

min
x∈1,5,10

(x×10 f loor(log10(barmax)))

where barmax is the maximum value for a data bar in the bar chart.
This results in the axis maximum to be either 1 or 5 times ten to the



13 1514West CapitalEast 13 1514

Figure 3: View axes are configured by dragging data fields to them.
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Figure 4: A view can be filtered by a data bar by dragging it to a
view’s filter area. Note the filter circle in the rightmost view.

n’th power. This satisfies three criteria: (1) the scale and tick marks
are easily readable, (2) the likelihood that different views use the
same scale is high, thus allowing analysts to compare views (DG
9), and (3) data encodings use much of the space within views. The
other axis shows a default data field provided by the data model,
thus minimizing interaction steps (DG 2). Alternatively, all data
fields could be configured manually to ensure that analysts are aware
of axis mappings. For the studied domain, we set the defaults as
treatment location (dimension) and number of admissions (measure).

The quick and simple technique of obtaining high-level infor-
mation is similar to Tableau. However, Tableau requires users to
select both dimensions and measures. Aiming for quick, high-level
overviews, we opted to define default measures and dimensions.
This reduces the amount of interaction, potentially at the price of
users’ reduced awareness of selected encodings.

4.4 Modifying views
In the following, we describe how views are modified in PADE.

View Configuration: To configure a view’s axis, data fields can
be dragged to them (Figure 3). This enables the most essential
configurations of a view. Releasing the data field (re-)configures the
axis, without relying on menus (DG 2). Dimension and measure
fields are compatible with x-axes and y-axes, respectively. This
provides the opportunity to alter views as needed, and to select
alternatives to the view configuration.

Other work has facilitated view configuration by direct axis inter-
action (e.g., Sadana & Stasko [45]). Tableau also uses drag and drop
to configure axes. Releasing data fields on axes facilitates replace-
ment, while releasing them on the “shelf” provides access to more
complex encoding possibilities. PADE facilitates data exploration
through other means of interaction. There is thus less need to create
complex visualizations within a view.

View Filtration: To filter a view, data bars can be dragged to
another view’s filter area (Figure 4). The technique allows for using
views as filter palettes, thus supporting flexible exploration in other
views (DG 6). Filters on one dimension are logically ’OR’ed and
are shown as one circle (since range queries are not part of PADE, it
is not possible to create two filters on the same dimension). Filters
on different dimensions are logically ’AND’ed and are shown as
different circles. Flicking up or down on a filter circle inverts the
filter. Flicking left and right on the filter circle enables or disables
the filter. This technique also works for view exploration, and both
supports temporal juxtaposition (DG 9).

View Synchronization: To synchronize views’ y-axis scales, a
view can be dragged such that its side area overlaps another view’s
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Figure 5: Two views’ y-axis scales can be synchronized by dragging
views such that their axes overlap and tapping a synchronize button.
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Figure 6: A view can be cloned by dragging a view with two fingers.

side area (Figure 5). When views that encode the same measure
overlap, a synchronize button appears above the y-axes in both views.
While holding onto the view, the view adopts the scale of the other
view when tapping the synchronize button. This allows analysts to
compare views side by side (DG 9) [19, 35], and offers a way to
obtain consistent y-axis domains, as recently discussed [34, 37, 42].

We designed the technique with the aim to minimize unintentional
synchronizations while arranging views. To reduce the likelihood of
errors, this technique does not support changing the y-axis measure.
The synchronization technique exemplifies how we considered the
use of two hands in a single task. The hand used to position the view
sets the context of the work done by the other hand [22].

4.5 Creating new views from existing views

In the following, we describe how new views are created from
existing views in PADE.

View Exploration: To explore parts of data in a view, data bars
can be dragged to the canvas, resulting in a new view showing the
dragged data (Figure 1, right), thus allowing drill down and more
detailed data exploration (DG 6, 11). The technique works similarly
to view filtration. The metadata necessary to provide a useful result
is obtained from the data model that provides child members (e.g.,
2017, September, or 22nd) at a level below the data bar (e.g., year,
month, or day). PADE shows these child members on the x-axis in
the child view. If no child members exist for the dragged member,
the dragged data bar is shown in the new view. To add additional
data bars’ child members to the child view, these bars can be dragged
to the child’s filter area, making it possible to select multiple items
from a view to analyze in more detail. A line represents the parent-
child relationship from the parent data bar to the child view’s filter
area. Creating a series of views, where each child is the parent of
another child, shows the exploration history (DG 3, 5, 6, and 8).

View Cloning: To clone a view, views can be dragged with
two fingers (Figure 6). This enables continued exploration in a
clone (DG 6), while the original view is preserved. Cloning works
similar to drag, and leverages the added efficiency provided by
chunking [13] drag and clone interactions. To rearrange a view and
create a clone, a view is first dragged. Adding a second finger after
positioning the original view, results in a clone operation. Continued
dragging positions the cloned view. Thus, cloning provides a way
to preserve a view in the middle of an analysis (DG 4, 5), to use
two alternative approaches to a data analysis (DG 3, 7), or to split
an analysis into two comparable branches (DG 9). For example,
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Figure 7: A view can be exploded by dragging data fields on them to
create copies of the view, filtered for values of the released field.

in analysing the cost distributions of a hospital, the analysts might
start from a view that encodes the number of patient contacts on the
y-axis. Before configuring the y-axis to encode costs, they can clone
the view to be able to refer back to the number of patient contacts.
Because the idea of working with many views is integral to PADE,
we chose to provide a quick method to clone views, and designed
view cloning for single-handed two-finger operation. Our approach
contrasts most other systems (e.g., Tableau, which offers a two-step
process). Perhaps closest to PADE, Tobiasz et al. [51] used a clone
technique based on dragging fingers from the visual representation
of the information visualization pipeline.

View Exploding: To explode a view according to members of
a data field, data fields can be dragged to a view’s right-hand side
to break down the original view by the dragged data field by its
members (Figure 7). This is similar to small multiples (DG 2, 10).
Releasing the data field generates views for each member of the
dimension. The large display space allows member views of similar
size and scale to the original view, which facilitates comparison. The
area of the original view is increased to contain the original view, as
well as the member views to the right of the original view. If view
exploding creates more than four views, the members are shown
in a 3-view wide scrollable list. The views hidden by scrolling are
aggregated to the right of the list. Data bars from other views may
be released on the explode area, just like data fields, to explode the
view by child members of the aggregate represented by the bar.

4.6 Implementation and apparatus
We implemented PADE in Java using a combination MT4J [38] and
the Prefuse data visualization toolkit [23]. The Prefuse renderers
were ported to MT4J where they generate and update MT4J compo-
nents. The data and data model were stored in an MSSQL server and
MSSQL Analysis Services cube, respectively. We used Olap4J [41]
to build data cube queries.

PADE works with different display sizes and touch systems. For
prototyping and developing PADE, we used a 3 by 1 meter touch
display at a resolution of 7680 by 3240 pixels (25 Mpixels), Figure
1 shows analysts using PADE on a 3840x2160 pixels, 1.9 by 1.0
meter (84”) touch display [49]. While the 84” display is sufficiently
large to demo the interaction techniques, the larger display allows
collaborators to use the system to its full potential.

5 ANALYSIS SCENARIO

To explain how PADE might be used, we describe a scenario where
a data scientist (Christine) and a medical specialist (Kamal) use
PADE for collaborative analysis. The analysts discuss the age dis-
tribution of birthing women. Knowing that view creation allows
them to quickly get high-level information about dimensions in the
data cube, Christine first drags treatment types from the menu and
releases it on the canvas. This creates a view that shows admissions
across treatment groups. Kamal has background information about
these groups, and quickly identifies group 14 (birth and labour). He
explores this bar, which creates a new barchart of admissions per
treatments in this group. By dragging patient age to the x-axis, Chris-
tine reconfigures the view to show age distribution in 10-year bins

across all admissions in group 14. Kamal notes the barchart recon-
figuration shows age bins that seem wrong (for example, 210–219
years). Frequently seeing and handling data quality issues, Christine
argues that they are seeing errors in the data set, and suggests to fo-
cus on the most common cases. Thus, Christine explores the 20–29
age bin, to obtain a barchart that shows a bar for each year from 20
to 29. Then, she drags the 30–39 age bin to the top of this barchart,
to add each of these years as individual bars. They now have a clear
sense of the age distribution in the entire data set. They agree to
explode this view by releasing the treatment location onto the right
part of the view to understand how the age of patients compares
across regions. This exploded barchart provides the analysts with
a barchart of age distributions for each of the five Danish regions.
While Christine is new to Denmark, Kamal has lived in Denmark
his entire life. He can thus fill in with knowledge about the regions.

From the exploded barchart, the analysts see that women in the
metropolitan areas on average are more than 30 years old when
giving birth, whereas they are less than 30 years old in rural areas.
However, they also see a lot of variation—for example, many women
in metropolitan areas give birth in their mid-twenties and many
women in rural areas give birth in their mid-thirties. In the scenario,
view exploding allowed the analysts to easily compare differences
between regions, while still keeping the exploded view for reference,
comparison, or for further analysis.

The video in supplemental material shows similar analyses.

6 DISCUSSION

In designing PADE, we wanted to enable analysts to create many
views with little effort. We think a key strength of the interaction
techniques in PADE is the direct mapping between what is shown in
the system, the possible actions, the potential results, and the visual
representation of this.

Some of the most interesting possibilities arise when using sev-
eral interaction techniques in combination. For example, view
cloning is simple when considered alone, but becomes powerful
when used with the other techniques. View cloning also makes other
techniques work better. For example, we chose not to allow x-axis
configuration in views that have children, because the relation to
the child views would get unclear. However, it is fast to create a
view clone, and then reconfigure this to allow for further exploration.
Additionally, view filtration influences child views. This means that
an entire analysis trail can be filtered simply by filtering the parent
view. This allows analysts to quickly construct comparative setups
where one trail shows what is included in a filter and another what is
left out, thus providing a good overview of the filtration. Similarly,
filters can be turned on and off by interacting with the filter dot thus
providing temporal juxtaposition [19], letting analysts understand fil-
tering implications after constructing a view trail. The idea of using
existing visualization views to modify or create other views is to
our knowledge novel. While, view exploration and view filtration
interaction techniques appear similar on the surface, the latter allows
analysts to use parts of views to interact with other views.

Our goals of providing quick and flexible interaction deserves
discussion. The quick and simple technique of obtaining high-level
information by creating a view reminds of Tableau. The key dif-
ferences are that PADE provides defaults to reduce the amount of
interaction, potentially at the price of analysts’ reduced awareness
of selected encodings. In contrast, other systems facilitate view
configuration by direct axis interaction. For example, Sadana &
Stasko [45] used a data field list from which to choose a data field
replacement on the axis. To keep the overall design consistent across
PADE’s interaction techniques, we only provide techniques based
on dragging, which further allows for using data bars in place of data
fields. The clone technique in PADE contrasts visualization systems
that use copy and paste—a two-step interaction—for copying visual-
izations (e.g., Tableau). Although Lark [51] is an exception, Lark



bases cloning on interacting with the visualization pipeline, where
PADE’s technique offers low spatial and temporal offset [7] by using
the view itself for interaction. Based on demoing the system to
people, we consider the quick and flexible qualities to be important
to evaluate. Based on Jo et al.’s [31] recent observations, we are
curious whether our defaults might confuse the analysts. We also
consider the connection between quick interactions and planning
and execution to be interesting study objects.

PADE only supports a single visualization type (bar charts); we
prioritized instead to make it work with large-scale data. However,
while the system is limited to one visualization type, the ideas behind
the interaction techniques are not, and might therefore be applied
to other visualization techniques. To help analysts understand rela-
tionships between views, we designed the parent-child links used
in PADE with inspiration from other work [16, 34, 35]. We have not
discussed how PADE’s model of view relations might be aligned
with other visualization types. We acknowledge that aggregates in
bar charts provide a natural grouping of data items (although other
ways to select groups of data exist), and that the model chosen might
not work as well to represent different kinds of relationships between
other visualization types.

We expect PADE will help the analysts to collaboratively do
complex data explorations quickly, some of which takes hours of
trial-and-error in their current system. While the analysts might
benefit from any kind of visualization, we see the aggressive creation
and expansion of visualizations in PADE as a key benefit. For
these reasons, it is obvious future work to understand how the
techniques might be used by the analysts, and by other analysts.
To this end, we plan to report on lab and deployment studies in the
near future, but consider this to be beyond the scope of this paper.

7 CONCLUSION

We presented PADE, which combines information visualization,
large displays, and touch interaction to support collaborative data
exploration of large healthcare data sets. We think our work points to
interesting possibilities for integrating data wrangling and analysis
within the context of analysis meetings. Additionally, the large dis-
play space for which we designed PADE provides the opportunity
of showing many views, and the system provides quick ways of
creating them. In particular, the techniques facilitate comparison
between multiple views in many ways, which is perhaps one of
the most important analytic tasks supported by visualization [10].
PADE points to an interesting design area that leverages and relies
on display space to provide interaction techniques that make use of
all this space for visual analytics.

ACKNOWLEDGMENTS

This work has been supported in part by the Danish Council for
Strategic Research grant 10-092316 and the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 753816.

REFERENCES

[1] C. Andrews, A. Endert, and C. North. Space to Think: Large, High-
Resolution Displays for Sensemaking. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’10), pp.
55–64, 2010.

[2] C. Andrews, A. Endert, B. Yost, and C. North. Information visu-
alization on large, high-resolution displays: Issues, challenges, and
opportunities. Information Visualization, 10(4):341–355, 2011. doi: 10
.1177/1473871611415997

[3] B. A. Aseniero, T. Wun, D. Ledo, G. Ruhe, A. Tang, and S. Carpen-
dale. STRATOS: Using Visualization to Support Decisions in Strategic
Software Release Planning. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, pp.
1479–1488. ACM, New York, NY, USA, 2015. doi: 10.1145/2702123.
2702426
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